

b UNIVERSITÄT BERN

Vorlesung Open Data

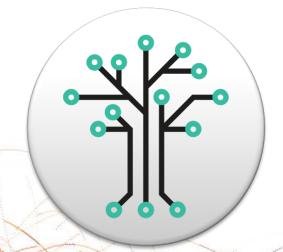
Digitale Nachhaltigkeit

Termin 3, 8. März 2018

Dr. Matthias Stürmer und Prof. Dr. Thomas Myrach

Forschungsstelle Digitale Nachhaltigkeit Institut für Wirtschaftsinformatik Universität Bern

b UNIVERSITÄT BERN


Terminübersicht Vorlesung

22. Februar 2018	Informationen zur Vorlesung, Einführung ins Thema Open Data und Open Government
01. März 2018	Open Government Data und das Impact Measuring Framework
08. März 2018	Digitale Nachhaltigkeit
15. März 2018	Entstehung und Anwendung des Öffentlichkeitsgesetz
22. März 2018	Geistiges Eigentum und die Open-Bewegung
29. März 2018	Open Data Journalism
05. April 2018	Semesterferien
12. April 2018	Open Finance und Participatory Budgeting
19. April 2018	Open Transport Data
26. April 2018	Open Geodata
03. Mai 2018	Aid Transparency und Open Aid
10. Mai 2018	Auffahrt
17. Mai 2018	Linked Data und Semantic Web
24. Mai 2018	Open Corporate Data
31. Mai 2018	Abschlusspräsentationen Open Data Apps

Heutiger Ablauf

UNIVERSITÄT BERN

- 1. Herausforderungen der Digitalisierung
- 2. Nachhaltige Entwicklung in der Wissensgesellschaft
- 3. Voraussetzungen der digitale Nachhaltigkeit
- 4. Beispiele der digitale Nachhaltigkeit

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT BERN

Digitalisierung als Chance

- Informationen können «gratis» vermehrt & geteilt werden
- > Viele Informationen sind frei zugänglich
- > Bessere **Entscheidungen** sind möglich
- Neue Kommunikationsmittel sind möglich

UNIVERSITÄT BERN

Problematiken der Digitalisierung

- Verlust von oder kein Zugang zu Informationen
- > Informationsüberflutung, Fake News
- > Abhängigkeit von IT-Konzernen
- Gefährdung des Datenschutz
- > Hacker-Angriffe
- > etc.

Zentrale Steuerung

b Universität Bern

6

Disruption zur Wissensgesellschaft

Industriegesellschaft
Sachkapital

Wissensgesellschaft

Wissen

Hierarchie/Kontrolle → Vernetzung/Fokussierung

vertikale Kommunikation → horizontale Kommunikation

sequentielle Prozesse → simultane Prozesse

Produkte → Lösungen

Privat-Eigentum → Zugang zu Gemeingütern

UNIVERSITÄT BERN

Privatisierung der Digitalisierung

> Weniger offensichtliche Probleme:

- Privatisierung des Wissens
- Privatisierung der Informations-Infrastruktur
- Privatisierung des Marktzugangs
- Netzwerkeffekte führen zu Konzentration / Monopolen

Folge davon:

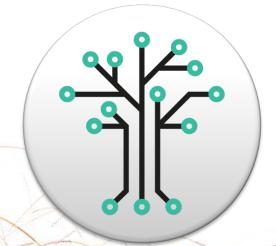
- Positives Potential der Wissensgesellschaft nicht erschlossen
- Volkswirtschaftlicher und gesellschaftlicher Nutzen eingeschränkt
- Machtkonzentration bei Technologie-Konzernen (GAFAM)

Digital > Wirtschaft > Apple, Amazon, Google, Microsoft und FB - so verdienen die Tech-Giganten ihr Geld

Diese fünf Konzerne haben gemeinsam einen Börsenwert von fast drei Billionen Franken.

Apple, Amazon, Google, Microsoft und FB - so scheffeln die Giganten ihre Milliarden 🚯

Zusammen sind sie 2'900'000'000'000 US-Dollar wert, zusammen erzielten sie 2016 einen Umsatz von 555 Milliarden Dollar – und zusammen strichen sie 94 Milliarden Gewinn ein. Die Big Five der westlichen Tech-Branche müssen nicht darben.


Hol dir die App! >

© 25.05.17, 19:54 @ 26.05.17, 11:41

UNIVERSITÄT Bern

Heutiger Ablauf

- 1. Herausforderungen der Digitalisierung
- 2. Nachhaltige Entwicklung in der Wissensgesellschaft
- 3. Voraussetzungen der digitale Nachhaltigkeit
- 4. Beispiele der digitale Nachhaltigkeit

Nachhaltige Entwicklung

UNIVERSITÄT BERN

 Ursprüngliche Idee: Nur so viele Bäume fällen wie nachwachsen können. (Hans Carl von Carlowitz, 1713)

Definition im Brundtland Bericht, 1987:

"Dauerhafte Entwicklung ist Entwicklung, die die Bedürfnisse der Gegenwart befriedigt, ohne zu riskieren, dass künftige Generationen ihre eigenen Bedürfnisse nicht befriedigen können."

Schützenswerte Ressourcen

b UNIVERSITÄT BERN

Umwelt

Volkswirtschaft

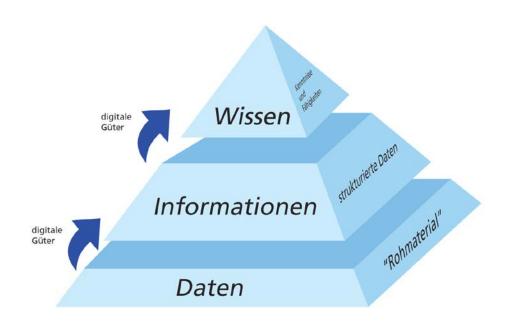
Menschen

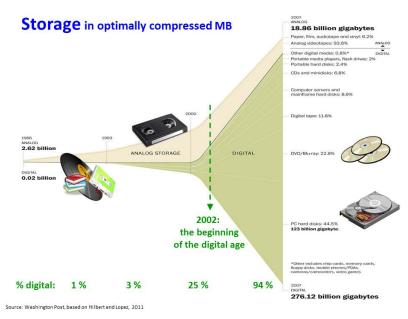
Wissen

Güterklassen

b UNIVERSITÄT BERN

		Rivalität		
		rivalisierend	nicht-rivalisierend	
ausschliess	sbar	Privates Gut	Klubgut	
Ausschliessbarkeit -			z.B. proprietäre Software	
Ad350IIIC33baiReit				
nicht ausschliess	sbar	Allmendegut	Öffentliches Gut	
			z.B. Open Source Software	

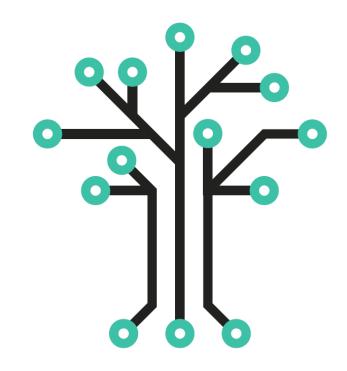

Quelle: N. Gregory Mankiw, Principles of Economics, Dryden 1998.


FS 2018 12

Digitales Wissen wächst exponentiell

Dualität der Digitalisierung

- 1. Digitalisierung als Mittel zum Zweck der nachhaltigen Entwicklung
 - Bspw. Smart Logistics damit Transportwege reduziert werden
 - Bspw. Green IT um Strom zu sparen für effizienten Betrieb von Rechenzentren
- 2. Digitalisierung als **Bestandteil (Zweck)** für nachhaltige Entwicklung
 - Bspw. Open Source Software nutzen damit Abhängigkeiten von westlichen IT-Herstellern reduziert werden und lokale Wertschöpfung geschieht
 - Bspw. Open Content (Wikipedia, OpenStreetMap etc.) damit auch Menschen mit niedrigem Einkommen vom globalen Wissen profitieren können

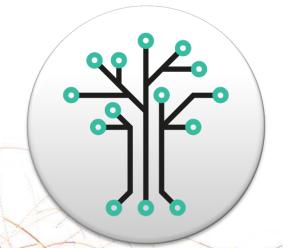

UNIVERSITÄT BERN

Paradigmen-Wechsel nötig

Ziel der digitalen Nachhaltigkeit:

Den Nutzen der Digitalisierung für die gesamte Menschheit von heute und morgen maximieren

(<u>intragenerationelle und</u> <u>intergenerationelle Gerechtigkeit</u>)



FS 2018 15

UNIVERSITÄT BERN

Heutiger Ablauf

- 1. Herausforderungen der Digitalisierung
- 2. Nachhaltige Entwicklung in der Wissensgesellschaft
- 3. Voraussetzungen der digitale Nachhaltigkeit
- 4. Beispiele der digitale Nachhaltigkeit

UNIVERSITÄT BERN

Verwandte Forschung

- Sustainable Development
 (World Commission on Environment and Development, 1987)
- Digital Preservation (Smith Rumsey 2010)
- > Private-Collective Innovation Model (von Hippel & von Krogh, 2003)
- Knowledge Commons (Frischmann et al. 2014)


Quellen:

- World Commission on Environment and Development, 1987. Report of the World Commission on Environment and Development: Our Common Future.
- Smith Rumsey, A., 2010. Sustainable Economics for a Digital Planet: Ensuring Long-Term Access to Digital Information. Blue Ribbon Task Force on Sustainable Digital Preservation and Access.
- von Hippel, E., von Krogh, G., 2003. Open Source Software and the "Private-Collective" Innovation Model: Issues for Organization Science. Org. Sci. 14, 209–223.
- Frischmann, B.M., Madison, M.J., Strandburg, K.J., 2014. Governing Knowledge Commons. Oxford University Press on Demand.

$u^{^{\scriptscriptstyle b}}$

10 Voraussetzungen für digitale Nachhaltigkeit

b Universität Bern

Quelle:

Stuermer, M., Abu-Tayeh, G. and Myrach, T. (2017). Digital sustainability: basic conditions for sustainable digital artifacts and their ecosystems, Sustainability Science 12: 247-262. doi:10.1007/s11625-016-0412-2

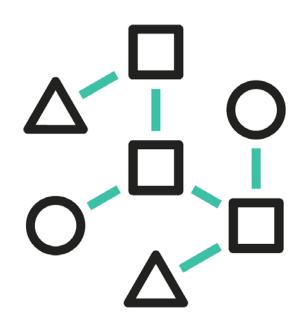
1. Ausgereiftheit

UNIVERSITÄT BERN

- Ausgereiftheit umfasst
 Verständlichkeit, Vollständigkeit,
 Korrektheit, Modularität, Integrität,
 Präzision, Sicherheit etc. von digitalen Gütern
- Hohe Qualität von digitalen Gütern schafft direkten Nutzen von deren Anwendern und erleichert künftige Verbesserungen

2. Transparente Strukturen

UNIVERSITÄT Bern


- Technische Offenheit des digitalen Guts:
 - Detaillierte Spezifikation der Datenstrukturen und Formate
 - Offen zugänglicher Software-Quellcode
 - Offen zugängliche Informations-Architektur und Dokumentation
- Transparenz ermöglicht Kontrolle und Verbesserungen durch die Öffentlichkeit was zu mehr Vertrauen und weniger Fehler führt

UNIVERSITÄT BERN

3. Semantische Daten

- Semantische Informationen (Meta-Daten, Ontologien) sind maschinenlesbare und/oder für Menschen verständliche Angaben über ein digitales Gut
- Mit semantischen Informationen kann Wissen besser absorbiert, weiterverarbeitet, interpretiert und weiterentwickelt werden

4. Verteilte Standorte

b UNIVERSITÄT BERN

- Digitale Güter sind bspw. als redundate Server oder Peer-to-Peer mehrfach an physisch unterschiedlichen Orten gespeichert
- Abhängigkeit von einem einzigen Standort wird reduziert
- Langfristige Verfügbarkeit der digitalen Güter verbessert

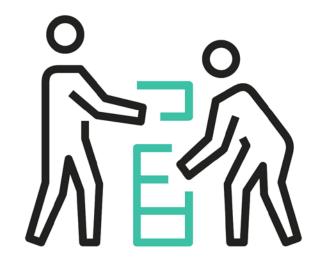
5. Freie Lizenz

UNIVERSITÄT BERN

- Allen ist erlaubt, digitales Gut zu nutzen und zu verändern
- > Bereits erschaffenes Wissen kann beliebig wiederverwendet werden → «Standing on the shoulders of giants»
- Gesellschaft profitiert durch freie Zugänglichkeit des digitalen Wissens und Vermeidung von «Rad neu erfinden»
- Offene Frage: mit oder ohne Copyleft?

6. Geteiltes Wissen

UNIVERSITÄT BERN


- Know-How, Kenntnisse und Erfahrungen über digitale Güter sind verteilt auf viele Personen aus unterschiedlichen Organisationen
- Wissens-Abhängigkeit» von wenigen Personen, Firmen und anderen Organisationen wird reduziert
- Beiträge von vielen zu digitalen Gütern werden ermöglicht

UNIVERSITÄT BERN

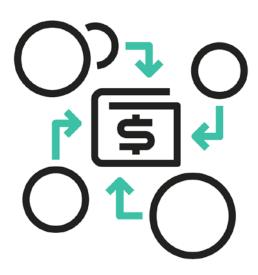
7. Partizipations-Kultur

- Alle kompetenten Leute mit konstruktiven Beiträgen können an Weiterentwicklung des digitalen Guts partizipieren (Community)
- Peer-review Prozesse stellen Qualität sicher
- Ökosystem um digitales Gut stellt Partizipations-Kultur sicher

8. Faire Führungsstrukturen

b UNIVERSITÄT BERN

- Kontrolle über digitales Gut liegt nicht bei einer Person oder Organisation sondern ist dezentral organisiert
- Faire Governance-Prozesse (Wahlen etc.) regeln Verantwortlichkeiten
- Offene Frage: Je grösser der Beitrag, umso grösser die Kontrolle (Meritokratie) oder «alle haben eine Stimme» (Demokratie)?



9. Breit abgestützte Finanzierung

b UNIVERSITÄT BERN

- Finanzierung der technischen Infrastruktur, Personal etc. erfolgt durch verschiedene Akteure
- Breit abgestützte Finanzierung schafft Unabhängigkeit von einer einzelnen Organisation und reduziert Interessenskonflikte

10. Beitrag zur nachhaltigen Entwicklung

UNIVERSITÄT BERN


- Digitales Gut und dessen Ökosystem leisten Beitrag zur nachhaltigen Entwicklung
- Schaffen und Nutzen von digitalen Gütern verbraucht natürliche und soziale Ressourcen. Sind diese nachhaltig? (bspw. erneuerbare Energiequellen)
- Herausforderung: Anwendung von digitalen Gütern kann nachhaltige Entwicklung fördern oder beeinträchtigen

b UNIVERSITÄT BERN

Heutiger Ablauf

- 1. Herausforderungen der Digitalisierung
- 2. Nachhaltige Entwicklung in der Wissensgesellschaft
- 3. Voraussetzungen der digitale Nachhaltigkeit
- 4. Beispiele der digitale Nachhaltigkeit

u^{t}

UNIVERSITÄT BERN

Historisches Beispiel

- «Golden Record» (Schallplatte)
 auf den 1977 gestarteten
 Raumsonden Voyager 1 und 2
- > 116 Bilder, dazu Töne, Musik etc.
- > Heute ca. 20 Mrd. km weit weg
- Platte hat Lebensdauer von ca.
 500 Millionen Jahren

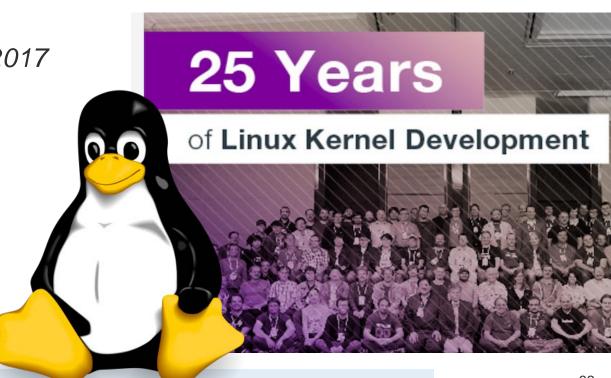
UNIVERSITÄT BERN

Beispiel Linux Entwicklung

12 Monate

8. Sept. 2016 – 8. Sept 2017

Beitragende: 4'195


Commits: 147'782

Total Zeilen Code:

33'580'696

Quelle: OpenHub

https://www.openhub.net/p/linux

UNIVERSITÄT BERN

Beispiel Linux Entwicklung

Company	Changes	Percent	
Intel	14,384	12.9%	
Red Hat	8,987	8.0%	
none	8,571	7.7%	
unknown	7,582	6.8%	
Linaro	4,515	4.0%	
Samsung	4,338	3.9%	
SUSE	3,619	3.2%	
IBM	2,995	2.7%	
consultants	2,938	2.6%	
Renesas Electronics	2,239	2.0%	
Google	2,203	2.0%	
AMD	2,100	1.9%	
Texas Instruments	1,917	1.7%	
ARM	1,617	1.4%	
Oracle	1,528	1.4%	

Company	Changes	Percent
Outreachy	1,524	1.4%
Vision Engraving Systems	1,456	1.3%
Free Electrons	1,453	1.3%
NXP Semiconductors	1,445	1.3%
Mellanox	1,404	1.3%
Atmel	1,362	1.2%
Broadcom	1,237	1.1%
NVidia	1,146	1.0%
Code Aurora Forum	1,033	0.9%
Imagination Technologies	963	0.9%
Huawei Technologies	937	0.8%
Facebook	877	0.8%
Pengutronix	790	0.7%
Cisco	692	0.6%
Qualcomm	656	0.6%

Quelle: Linux Foundation, August 2016 "Linux Kernel Development: How Fast It is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It" https://www.linux.com/publications/linux-kernel-development-how-fast-it-going-who-doing-it-what-they-are-doing-and-who-5

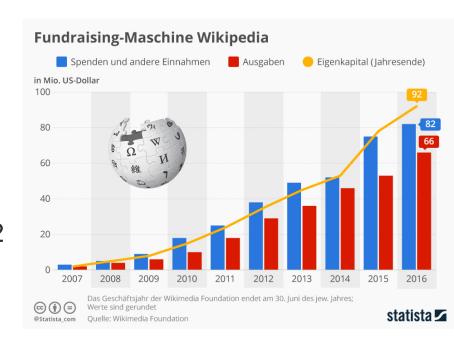
FS 2018 33

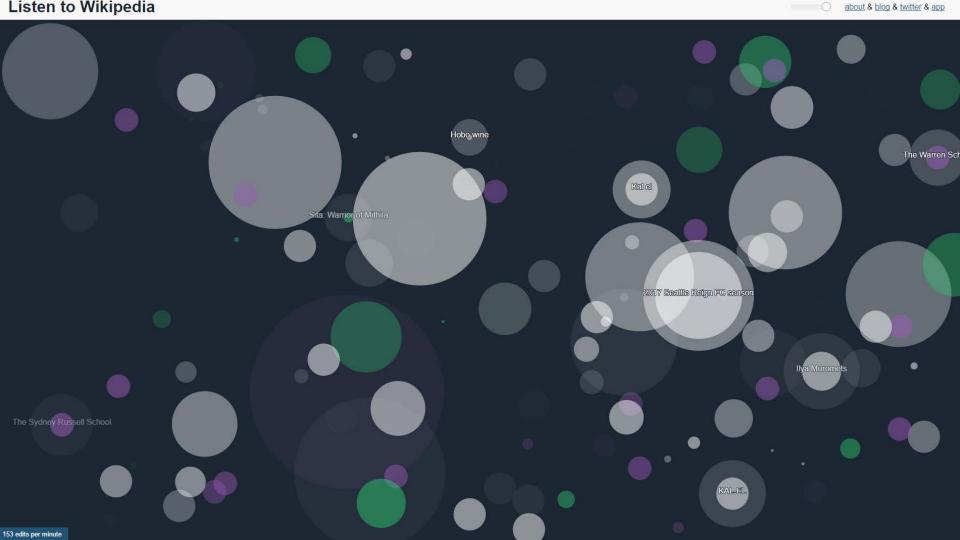
Beispiel Wikipedia

7. März 2018

Englische Wikipedia

Inhalts-Seiten: 5'585'022


Seitenveränderungen: 825'109'026


Registrierte Beitragende: 33'094'844

Aktiv in den letzten 30 Tagen: 139'732

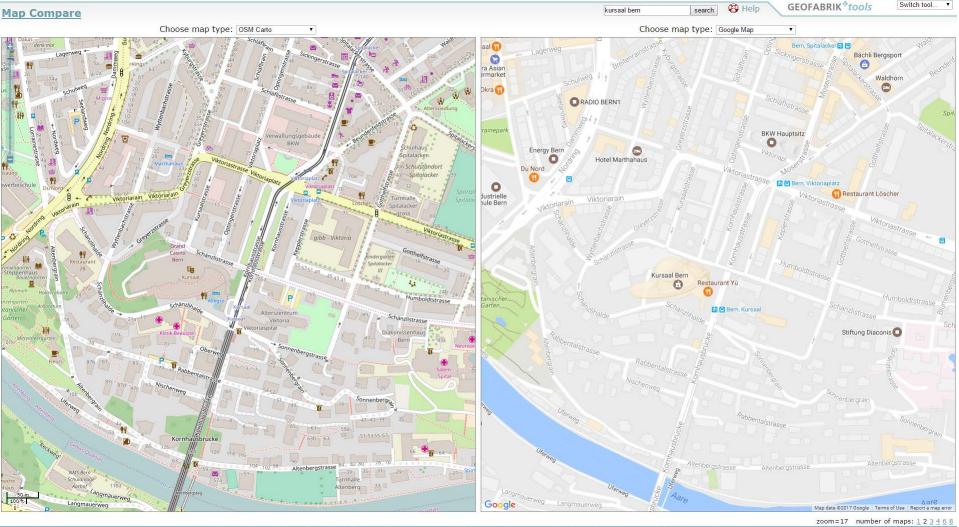
Quelle: Wikipedia

https://en.wikipedia.org/wiki/Special:Statistics

Beispiel OpenStreetMap

7. März 2018

Anzahl registrierte Beitragende: 4'792'992


Anzahl Strassen: 475'324'037

Anzahl GPS Punkte: 6'064'623'787

Quelle: OpenStreetMap

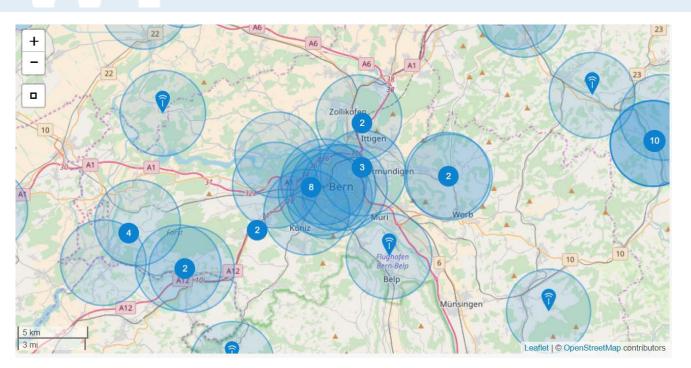
http://www.openstreetmap.org/stats/data stats.html

Switch tool... ▼

UNIVERSITÄT BERN

Beispiel The Things Network

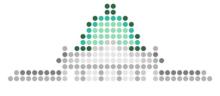
- IoT (Internet of Things) Basis-Infrastruktur
- Technologie basierend auf LoRaWAN (Long-Range Wide Area Network)
- > Reichweite eines einzigen Gateways: 2km 40km
- > Datenübertragungsrate: 292 Bit/s 50 Kilobit/s
- > The Things Network (TTN) schafft frei zugängliche Netzwerk-Verbindungen für IoT Anwendungen
- > Bereits sehr aktive Berner TTN Community



Link: https://www.thethingsnetwork.org/community/Bern/

b UNIVERSITÄT BERN

Beispiel The Things Network



Link: https://www.thethingsnetwork.org/community/Bern/

UNIVERSITÄT BERN

Parlamentarische Gruppe Digitale Nachhaltigkeit

Co-Präsidium:

Edith Graf-Litscher Nationalrätin SP, Thurgau

Franz Grüter Nationalrat SVP, Luzern

Parldigi

Kernteam:

Balthasar Glättli Nationalrat GRÜNE. Zürich

Rosmarie Quadranti Nationalrätin BDP, Zürich

Kathy Riklin Nationalrätin CVP. Zürich

Christian Wasserfallen Nationalrat FDP, Bern

Thomas Weibel Nationalrat GLP. Zürich

UNIVERSITÄT BERN

Thematische Schwerpunkte von Parldigi

Open
Source
Software

Open Standards

Open Government Data

Open Access

Open Content

Open Internet

41